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Lighthill, in his elegant and classic theory of jet noise, showed that the far-field 
acoustic pressure of noise generated by turbulence is proportional to the integral 
over the jet volume of the second time derivative of the Lighthill stress tensor, 
the integrand being evaluated at  a retarded time. The purpose of this paper is to 
generalize the above results to include the effects of mean flow (velocity and 
temperature) surrounding the source of sound. It is shown quite generally that the 
integrand is now a certain functional of the Lighthill stress tensor evaluated at  a 
retarded time. More important, however, a t  low and high frequencies this func- 
tional assumes an extremely simple form, so that the acoustic field can once more 
be given by integrals of the time derivatives of the Lighthill tensor. Both the self- 
and the shear-noise contributions to the pressure are evaluated. 

1. Introduction 
In  a recent series of papers Mani (1972, 1974, 1975a, b )  showed that, by in- 

cluding the effects of mean flow surrounding the source of sound, many seemingly 
strange characteristics of the noise of round jets could be explained in a systematic 
manner. Of course, Mani retained some of the original concepts of Lighthill 
(1952) (e.g. compact and convecting quadrupoles as sources of sound) but force- 
fully showed that acoustic/mean-flow interaction is a key physical phenomenon 
that cannot be ignored in jet noise, as is commonly done in applications of Light- 
hill’s work. 

The importance of acoustic/mean-flow interaction has been recognized for 
some time and views to that effect have been expressed by Ribner (1962), Csanady 
(1966), Pao (1973) and Gottlieb (1960). However, their discussions are focused on 
one limited aspect of mean-flow shrouding, namely shielding at high frequencies 
and shallow angles. More recently Ffowcs Williams (1974), starting from the 
exact Lighthill result, showed that a vortex-sheet analogy is naturally contained 
in the equationsof motion. Again his work points to the importance of a shrouding 
mean flow. 

Our primary interest here is in a discussion of the noise generated by small- 
scale turbulence surrounded by the mean flow. Thus we adopt the Lighthill 
picture of noise generation by reasonably small and incoherent eddies convecting 
with the fluid. The vortex-sheet analogy of Ffowcs Williams, on the other hand, 

3 F L M  79 



34 T. P. Balsa 

suggests that some of the noise generated may indeed come from the “instability 
of the jet boundary”. Here we shall say nothing about the latter source mechan- 
ism but recall that Mani’s work (without any large-scale instability) is very 
successful :in explaining most properties of the noise of round jets, hot or 
cold. Admittedly Mani’s comparisons cover high subsonic to low supersonic jet 
velocities, and large-scale instability becomes most prominent at  even higher jet 
velocities (Ffowcs Vriilliams 1973). 

Recognizing then that the following work may have Mach number limitations, 
we start from Lilley’s (1 972) equation, which takes the effects of mean flow into 
account to lowest order. More precisely, the Lilley equation is valid for uni- 
directional sheared flows with arbitrary velocity and temperature profiles. 
Solutions to this equation have been given by Mani in the special case of slug- 
flow profiles, by Goldstein (1975) for low frequencies and by the author (1976a) 
for high frequencies. The last two studies are for arbitrary velocity profiles and 
cold jets. 

Each of the above authors has given the solution for a harmonically oscillating 
and convecting point singularity. The purpose of this paper is to obtain the time- 
dependent solution to Lilley’s equation with the appropriate sheur- and self-noise 
sources as forcing terms. It is shown that the acoustic pressure can be expressed 
as an integral over the jet volume of certain time derivatives of the Lighthill 
stress tensor evaluated a t  a retarded time. In  this respect the present results are 
very reminiscent of those of Lighthill and indicate that the stable acoustic solu- 
tions to Lilley’s equation probably describe jet noise due to small-scale convecting 
eddies. 

2. Formulation and solution of the problem 
As discussed in the previous section, our starting point is Lilley’s equation 

1 d ap dU azp L ( p ;  U ,  x’) = - D&p-  DuAp--  (l0gc2) D,-+ 2 -  7 = 9’(x‘, t ) ,  ( l a )  
c2 dr ar dr ax ar 

where p is the acoustic pressure, U = U ( r )  and c = c ( r )  are the undisturbed 
(i.e. mean) jet velocity and speed of sound respectively, A is the three-dimen- 
sional Laplacian in the space variables and 

D ,  = alat + ualazl ( I b )  

is a convective derivative. Physical space is spanned by a stationary cylindrical 
polar co-ordinate system x‘ = ( r ,  0, x’) and t denotes time (figure 1). The source 
strength sP(x’, t )  is given by 

du a 9’ = pD, V‘ . V‘ . U’U’ - 2p - -‘ 0’. U; u’, 
dr ax 

wherep = p(r )  is the undisturbed density, V‘ is the gradient operator with respect 
to the x’ co-ordinate system and u’ is essentially the fluctuating turbulent 
velocity (u: is its radial component). Equations (1)  and ( 2 )  describe upproximately 
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FIGURE 1. Geometry of the problem. 

the propagation and generation of sound in a turbulent jet. The quantity U’U’ is 
called the Lighthill stress tensor. 

It should be pointed out that (1 a) contains two fundamentally different types 
of quantity: deterministic variables (e.g. c and U )  and random variables (e.g. 
p and 9). The purpose of this paper is to establish the dependence of the far-field 
instantaneous pressure on the instantaneous noise source. Once this dependence 
is known, the mean-square pressure (or suitable autocorrelations of the pressure) 
can be readily computed. This approach is exactly analogous to the one used by 
Ribner [1969, equations ( 1 )  and (3)]. 

Following the classical notions of Lighthill (I 952), we assume that the source of 
sound is a convecting turbulent eddy whose velocity is U, = (0, 0, U,) = constant. 
GeneralIy U, is some fraction of the jet exit velocity (Davies, Fisher & Barratt 
1963). Let us further assume that the ‘spatial and temporal’ characteristics 
of this eddy, when viewed from a reference frame x = (xl, x2, x3) attached to 
the eddy, are given by 

where T is a ‘known’ function. Typically T is given by results for isotropic tur- 
bulence (Proudman 1952; Ribner 1969). These remarks on source convection 
imply that the Lighthill stress tensor in Lilley’s equation can be written as 

U U ( X ,  t )  = T ( x ,  t ) ,  ( 3 4  

U’U’ = T(x‘-U, t , t ) .  ( 3 b )  
Of course, our remarks on representing a stochastic variable uu in terms of a 

‘known’ function T are highly qualitative. It is well known that only the statisti- 
cal properties of uu can be represented (with some degree of accuracy) by the 
results for isotropic turbulence. Nevertheless, it  is possible to show that the 
conclusions we draw from this paper are exactly the same as those obtained by a 
more rigorous analysis involving moving correlations of the noise source term 
(see appendix). 

[It is convenient to introduce the Galilean transformation x = x’ - U, t into our 
governing equations. The final result is that the pressure Auctuations obey 

-m; V,X) =m t i ,  (4a)  
3 -2 
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( 4 b )  

v =  u-u,, (4c)  

d V  a 
dr ax where f(x, t )  = PDTV.  V .T(x, t )  - 2 ~ -  - V .T, (x, t ) ,  

self -noise shear noise 

T,. = u,. u is the radial component of T (u, is the radial component of u) and V is the 
gradient operator with respect to the x = (xl, x2,  x3) = (r,  8, x) co-ordinate system 
(figure 1). The space derivative in D, is a/&. 

The first term on the right-hand side of ( 4 b )  is usually called the self-noise 
source and the second the shear-noise source. We shall retain this terminology even 
though it is somewhat misleading since, as we shall see, the self-noise terms also 
generate contributions to the acoustic pressure that are proportional to d V/dr.  
Note, however, that both source terms are quadratic in the velocity fluctuations. 
This definition of shear noise, essentially that given by Lilley (1972), differs from 
those given by Lighthill (1952) and Ribner (1969). The most significant difference 
is that our shear noise is quadraticin the velocity fluctuations, whereas the 
Lighthill-Ribner forms are only linear. 

We next solve ( 4 a )  under the additional restrictions that p is finite on the jet 
axis r = 0 and represents outgoing waves a t  infinity. Furthermore, this solution 
will be valid only as t+00 since all initial conditions (at t = 0) o n p  are ignored. 
In  the following analysis we assume that dU/dr < 0, dc/dr < 0 and that 
U = U, = constant and c = c, = constant as r - fco .  We also use the notation 
M = U/c,  and H, = U,/c,. These velocity and temperature profiles are 
representative of those of round jets in a large wind tunnel of speed U, and 
temperature c,. 

The solution to ( 4 a )  is obtained by a sequence of Fourier transformations. A 
similar approach was used by Pao (1973 ) for the Phillips equation. Defme a three- 
dimensional transform of the pressure by 

- 0 0 < w <  00, - 00<s<00 ,  n = 0 , + 1 , & 2 ,  ..., 
with an identical equation holding for F in terms off, and apply this transform to 
(40) .  After a number of integrations by parts (and ignoring the contributions 
from the limits co) we find that 

where 

N = V/Cm = ( U  - Q ) / C , ,  ( 6 4  

k = w / c ,  ( - m < k < m ) ,  a = s / k  ( - 0 0 < ~ r < 0 0 )  (6 e 7 f )  

and w and s are the Fourier transform variables in (5). We shall refer to the Fourier 
time transform variable w as the frequency. 

Consider next two linearly independent solutions of the homogeneous version 
of ( 6 a ) ,  and denote these byYn(r) and Yt",(r) respectively. We require these to 
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have the limiting behaviour 

$,(r) - rlnl as r+O (finiteness condition), (7a)  

Zm(r)  +H(;)(kg,r) as r+cc (outgoing-wave condition), ( 7 b )  

where Hg) is a Hankel function and gm is the value of g a t  r = co. (Note that we 
restrict our attention to those values of o for which g z  is positive; otherwise P is 
exponentially small in the far field). Using (6a) and (7) it  is a classical Sturm- 
Liouville problem to show that (Friedman 1956, p. 151) 

where w is independent of r and 

where the subscript zero denotes the value of the quantity at r,. We remark that 
the upper limit of integration is really finite (since P vanishes outside the jet) and 
( 8 b )  is valid as long as r is greater than this upper limit. 

The result for the acoustic pressure p is readily obtained by applying the 
inverse transform corresponding to (5) to ( 8 b ) .  An intermediate result is 

For large values of (x2 + r2)3, i.e. for a point in the far field, it is possible to evaluate 
the s integral in (9a) by the method of stationary phase (Carrier, Krook & 
Pearson 1966, p. 273). The point of stationary phase is given by 

(T = s /k  = cos O/( 1 - BC cos O), (9b) 

wheregc = (V, - Um)/ca and O is the angle between the jet axis and thevector that 
joins the observation point and the origin of the convecting x co-ordinate system 
at the time of emission. In  jet-noise theory O is usually interpreted as the angle 
with respect to the jet axis. 

We remark that in the rest of this paper, unless otherwise noted, whenever CT 
(or 6 = ok) appears it is to be replaced by the right-hand side of (9b). 

After replacing Po in ( 8 b )  by the transform of fo [see (5)], substituting the re- 
sultant equation for P into (ga ) ,  carrying out the stationary-phase calculations 
and collecting terms, we arrive at  

i e-imt ( 3 1 2  (1 - B, cos 012 eikR 
where G ( r ,  6'- O0, x; ro I t ,  o) = - 

47rc, kR c,  ( 1  - Bo cos 0)3 

$n(ro) (gd) m 
x C, exp [ - in(8 - 8, + *n)] 

n=-m nw(k,  o, n)/2i' 
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where dx, = ro dr, do, dx,, the subscript zero on c and iI3 indicates their values 
a t  r,, R is the distance between the point x = 0 a t  the time of emission and 
the location of the observer (in the far field), i@, = M(r,) -M, ( M  = U/cm, 
Mm = Um/cm) and k = w/c,. The integral with no limits is to be taken over the jet 
volume. Note that the tilde denotes a non-dimensional velocity (normalized by 
c,) relative to Mm = Um/cm. Also, (9c, d )  are to be evaluated a t  the point of station- 
ary phase [i.e. g is given by (gb)].? 

The function G is called the Green’s function. Its importance is that once i t  is 
known the acoustic pressure of an arbitrary source f(x, t) can be calculated by 
quadrature from (9c). Replacing f(x, t )  by S(x) S(r -?) S(0) exp ( - iQt) / r  and 
evaluating the integrals in (9c) we find that G(r,  8, x; ?It, Q) satisfies (4a)  with its 
iight-hand side replaced by the above combination of delta functions. 

We emphasize that (9c, d )  approximate the acoustic pressure only in the far 
field as R -+ co. 

We next write the expression for the acoustic pressure (9c) as a volume integral 
of a suitable term evaluated a t  the retarded time. At this point it is convenient to 
treat the self- and shear-noise terms separately [see (4b)I .  First let us look a t  the 
self-noise. For brevity set 

From ( 4 b ) ,  (9c, d )  and (lOa) it  is possible to show that 
(104 

dxo ( l o b )  

V.V.T(x,t) = F(x,t). 

1 -gC cos 0 ( c)2/@[xo, t - R/c, +x,. </c, ( 1  -i@ccos O)] 
p c ,  (1 - ilz, cos O)2 

Pseli = 4nR 

by writing pD, S ( x ,  t )  forf(x, t )  and integrating (9c) by parts with respect to to 
and x, to eliminate the operator D,. Since in the Lilley formulation pc2 is a 
constant (proportional to the undisturbed static pressure) this quantity has been 
removed from under the integral sign. In (1 0 b )  we have also used the definition 

exp [ - in(8 - 0, + gn.)] 
n = - m  

r 
l-&ccosO 

X 9 - n ( r o )  dw. (10c) 
n.w(k, v, n)/2i 

Here I’ is an arbitrary quantity introduced for later convenience and 

where the components of < are written in the order of (XI, x2, x3) ;  see figure 1. 
Note that to derive ( l o b )  we have multiplied and divided cr! by 

exp [ikr,r cos(8-0,)/(1 -MCcos~)1. 
The multiplicative factor is shown explicitly in ( loc)  and the divisor com- 
bines with the exp ( - i k m , )  in (9c) to form the retarded-time contribution 

By a completely similar procedure, we find that the shear-noise contribution is 

< = (I? cos 8, sin 8, cos 0), (104  

xo. </[Cm (1 - JTC cos O)]. 

cos 0(l -ac cos 0 )  &x,, t - R/c, + x,, . </cm (1 - Bc cos O)] 
2n.R (1 - Bo cos 0)3 Pshear = 
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where & is given in terms of 92 by (1Oc) and 

g(~ , t )  = V.T,(x,t). (1 1 b )  

Equations ( l o b )  and (1 1 a )  are the key results on which all the following dev- 
elopments of this paper are based. These results express the acoustic pressure in 
the far field (R-tco) as an integral of a suitable term over the jet volume. This 
term is to be evaluated at the retarded time, indicated explicitly in ( l o b )  and 
(1 1 a).  In  these respects, the present theoryisextremelyreminiscent of the classical 
work of Lighthill. There are, however, some important differences, which we shall 
point oat in the following sections. 

We remind the reader that in these equations 0 is the angle with respect to the 
jet axis and 

M(r)  = U(r)/cm, a ( r )  = M ( r )  -Ma. (12e7.f) 

In  the following sections, we shall show that under suitable conditions the 
integrand in ( l o b )  can be written as 

&/(l-BcosO)2 = H ( r ) S  = H(r)V.V.T (13) 

for some function H(r ) .  T is the Lighthill stress tensor. Note that (13) is to be 
evaluated at a retarded time and that the double divergence operates only on the 
first argument of T. In  other words, T evaluated a t  the retarded time has the 
functional form T = T[x, t - R/c, + x . </cm (1 - a, cos O)] but the operator 
V = a/ax, in (13) operates only on the first argument of T (i.e. x) and not on the 
second (i.e. t ) .  Of course, the second argument of T is also a function of x because of 
retarded-time effects. The volume integral of (13) can be evaluated by two inte- 
grations by parts and two applications of the divergence theorem. Some of the 
volume integrals (after being converted to surface integrals) will vanish because 
the source function is zero far enough away from the jet. If we write (for two ar- 

bitrary functions 4 and $) $ = $ whenever I 4 d x  = I q5 dx over a fixed volume, 
it is relatively straightforward to show that 

J 

O H .  T, . Vr* 
J 2 

H V  .V  .T = T:VVH + 
c, (1 - Bc cos 0)  

(14) 
HT,: VVT* 

VT* . T,, . VT* + H 
c: (1 - &ic cos 0 ) 2  c, ( 1  -Bccos 0) '  + 

where the subscript t denotes partial differentiation with respect to time and 
T* = x.<. 

Similarly we shall show that the integrand in (1 1 a) may be written as 
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for some function K ,  so that 

K 
(Tr)t-Vr*, c, (1 - B & O S  0 )  

s KV.T ,  z= - V K . T ,  - 

where T, = u, u is the radial component of T and the subscript t again 
denotes differentiation with respect to time. Here u, is the radial component of 
the velocity u. 

3. The Lighthill results 
To see the significance of the previous results, let us consider them in a rel- 

atively simple and straightforward setting. We shall assume in this section that 
M ( r )  = 0 (N, + 0) and c/c, = 1. Formally these simplifications correspond t,o 
those Lighthill invoked in his classic theory of jet noise. The function g in (6c) is 
now independent of r and r is chosen to be sin 0. This yields 

g = sinO/(l-MccosO), VVr* = 0. (17a) 

Here g has been evaluated at the point of stationary phase [see (9b)l. Two linearly 
independent solutions of (6 a)  satisfying (7  a, b)  are 

2 n ( ~ )  = Jn(kgr), q z ( r )  = HZ’(kgr), ( 1 7 b ,  c) 

(18a) 

where Jn is a Bessel function of the first kind. Thus 

wn/2i = (1 - M, cos 0 ) 2  

and the infinite series and integrals in (1Oc) can be evaluated in closed form to 
yield A 

S(x ,  t )  = g ( x ,  t ) / (  1 -M, cos 0 ) 2 .  

After substituting (18b)  into ( l o b )  we find that 

PCO 
= 4nB( 1 - N, cos 0 )  

A comparison of the integrand in (18c) and (13) clearly shows that H = 1, so that 
an alternative expression for the acousbic pressure is given by a combination of 
(14) and (18c): 

where the integrand is evaluated at the retarded time. Equation (19) is the 
very famous result of Lighthill. A thorough discussion and the implications of 
this expression were given by him over twenty years ago. Here, of course, 
r = (sin 0 cos 0, sin 0 sin 0, cos 0). 

4. Low frequency results 
In  a recent paper, the author (1975) considered the low frequency radiation by 

a convecting source immersed in a jet with a constant (or slug) velocity profile. 
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Some of the general results of that paper are applicable to jets with arbitrary-f 
velocity and temperature profiles. We shall invoke these results to establish the 
lowest-order acoustic field as k -+ 0 for these more general profiles. 

More precisely, our low frequency theory is an expansion in the small non- 
dimensional parameter lakl, where a is a typical length scale associated with the 
velocity and temperature profiles (usually a can be taken to be the radius of the 
jet). The smallness of the above parameter implies that the wavelength of radia- 
tion is much larger than the radius of the jet. This expansion in lakl is singular in 
the sense of matched asymptotic expansions. The appropriate length scales in the 
inner and outer regions are the jet radius and the wavelength respectively. We 
refer the interested reader to the cited work for details. 

First, it is known that to lowest order in lakl the radiation field will be axially 
symmetric, which implies that all terms except the n = 0 term can be ignored in 
(9d) and (1Oc). Furthermore, from (6a) and (7a) i t  may be seen thatwhen lkl < 1 

f o ( r )  = constant = 1 POa) 

and 

= (2i/n)logr+ ... as r+m. (20c) 

Now X o ( r )  does not tend to H$)(kg, r )  when r + 00, as required by (7  b ) ;  rather it 
matches the Hankel function in the sense of matched asymptotic expansions. 
Thus, to lowest order in frequency, the correct inner solution is S 0 ( r )  as given by 
(20b). Evaluation of the Wronskian (8a)  shows that 

nw/Zi = (1 - Arc cos 0 ) 2 ,  

&(x, t )  = S ( x ,  t ) / (  1 - Arc cos 0 ) 2 .  

( 2 0 4  

( 2 0 4  

so that from (lOc) we find that when I? = 0 

Second, a t  very low frequencies the transverse location (i.e. the xl, x2 co- 
ordinates) of the eddy volume is clearly unimportant (this is why the acoustic 
field of a source is nearly axially symmetric), so that I? is indeed zero and 

r ( O , O ,  cos 0). (21) 

We next use (2Oe) and (21) in ( l o b )  [with a similar result for ( l la)]  and invoke 

Here we write uu for the Lighthill stress tensor T, whose components in (22) are 
evaluated at  the retarded time. The subscript t denotes partial differentiation 
with respect to time. We shall postpone the discussion of these results to a later 
section. 

t 1.0. continuously varying rather than slug profiles. 
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5. High frequency results 
At the other end of :he spectrum, at high frequencies, there is also a simple 

relationship between S and g. Here I ku] is assumed to be large and the corres- 
ponding results are obtained from the lowest-order term in the expansion of the 
acoustic pressure in powers of [ kul-p, ,f3 3 0. 

Since lkul is large, the basic assumption of the theory is that the velocity and 
temperature profiles change only slightly in one wavelength. In  order to derive 
an approximation to (6 a)  that is valid at high frequencies, it  is necessary to com- 
pare the gradients of the mean-flow profiles directly with k.  Note that (6u), as 
written, is unsuitable for this because dv/dr (i.e. the mean-flow gradient) multi- 
plies dP/dr whereas k multiplies P. To place v-ldv/dr and k on an equal footing, 
introduce 

and substitute this into (6u) to obtain 

where the dots stand for particular combinations of the mean-flow gradients that 
are ignored in relation to k2g2 (k-+co) .  Note that the f i s t  derivatives of L?J are 
absent from (236) .  

It is easy to verify from the expressions (6c) and (9b) for g2 and g that the 
former becomes negative for values of 0 in the vicinity of the jet axis; in other 
words whenever 0 is in the zone of relative silence. In order to obtain the solution 
to (23  b )  which is uniformly valid for all r and 0, we must consider r as a complex 
variable and pick suitable branches of the corresponding complex solution as g2 
changes sign. This can indeed be done in principle? (Carrier et aZ. 1966, p. 295; 
Balsa 1976~) .  However, in the present analysis we restrict our attention to 
g2 > 0 to avoid this additional complication. This inequality means that we are 
looking at the sound pressure level and convective amplification outside the 
zone of relative silence. Now it is easy to see (and was actually proved by the 
author 1976 a) that the same convective amplification factor appears inside the 
zone of silence as outside it. Thus the conclusions that we draw with respect to 
convective amplification are really valid for all angles. The shieZding aspects of 
acoustic/mean-flow interaction, present only in the zone of relative silence, are 
discussed elsewhere (Balsa 1976b). 

Since the solutions to the homogeneous version of ( 2 3 b )  are (</g)#C%(kE), 
where C, is any Bessel function of the first kind and 

(24) 

t For example, the classical WKBJ turning-point conditions tell us how to go from 
one branch (g2> 0) to the other (g2<O). 
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it  is a simple matter to show from (23a) and (7a, b )  that 

Here the subscript J denotes the value of a variable on the jet axis r = 0. 

The result for the self-noise contribution is 
The infinite series and integrals in ( loc)  can again be evaluated in closed form. 

P- ('o;olgo ")' S[x,, t - R/cm + 71 ax,,, (26 a )  
pse'f = 47r R( 1 - BC cos O) I r:) 1 - B0 cos 0 

dr 
where 7 =  

Here the actual time delay 7 differs somewhat from the classical result. This 
is because in the presence of mean-flow gradients the disturbance travels along 
the acoustic ray and not along a straight line joining the emission and observation 
points. Thus 

7* = x,coso+~o(l-i tFccoso)cos(0-80) +(1-itFccos@) (g-g,)dr, 

(26 c) 
/OW 

so that in this high frequency limit (retaining only the second time derivatives of 
the Lighthill tensor) we find from (26a)  and (14) that 

where VT* is the derivative of (26 c) with respect to the source location. Here we 
write uu for the Lighthill stress tensor T and the subscript t again denotes partial 
differentiation with respect to time. The components of uu appearing in the 
various integrands are evaluated a t  the retarded time. 

The shear-noise contribution is of lower order in k, so that the total acoustic 
pressure can be approximated by the self-noise component (i.e. p 

When the sources are in the vicinity of the jet axis, (27a)  assumes a simple form 
since 5, z g, ro, where g J is the value of g on r = 0. In  this case we have 

pself). 

where 

Equation (27 b )  is extremely reminiscent of the Lighthill result and we propose its 
use at high frequencies. An equivalent form of (27b) was compared quite success- 
fully with experimental data (Balsa 1 9 7 6 ~ ) .  

< = [g, (1 - Bc cos 0 )  cos 8, g J (1  - BC cos 0) sin 8, cos O 1. 
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6. Discussion 
Let us first observe that, as we let M -+ 0 and clc, --f 1 in the high frequency 

theory (27), we recover Lighthill’s expression (19). At low frequencies [see (22)], 
however, we obtain p = 0. This is because the quadrupole source terms are 
O(k2)  and terms of this order are ignored in the low frequency analysis. 

At low frequencies the sound fieldp is of dipole type with an effective convective 
amplification factor of (1 -ac cos 0)-5. Furthermore, this sound field is inde- 
pendent of jet temperature provided that the velocity fluctuations are nearly 
incompressible (i.e. that these fluctuations themselves do not depend on tem- 
perature). The last remark implies that the jet density exponent is zero. Thus, in 
the present formulation, a t  very low frequencies the mean-square acoustic pres- 
sure has an amplification factor of (1 - BC cos [including the correction of 
1 -BC cos 0 for source volume effects (Ffowcs Williams 1963)]. Of course, the 
corresponding amplification factor for the mean-square pressure in the Lighthill 
theory is (1 -Be cos 0)-5. 

A n  equivalent form of (22) in frequency space for a cold jet was obtained by 
Goldstein (1975). 

A very interesting result, alluded to previously, is that at low frequencies it is 
the self-noise contribution that generates (22) and the shear-noise term is com- 
pletely cancelled by part of the self-noise term. In this sense, there is no shear noise 
at low frequencies in the Lilley formulation. It should be recalled, however, that 
the Ribner form of the shear noise survives at low frequencies (Ribner 1969). 
Consequently, when the effects of a shrouding mean flow are taken into account 
even the self-noise sources can generate terms proportional to the gradients of the 
mean flow. Mani (19753) identified some of these additional terms, calculated 
them for slug flows and showed that they are needed to account for the negative 
density exponent of hot jets. The latter is observed experimentally (Hoch et al. 
1973) and could not be explained theoretically before Mani’s work.? However, 
Mani only accounted for the derivatives of the mean jet density. There are similar 
terms proportional to the velocity gradient. Also, as in the theory of Lighthill, i t  is 
precisely the variation of retarded time across the eddy volume that leads to a 
net acoustic field that behaves as R-l (R + co) and to large convective amplifica- 
tion factors for higher-order singularities. The last remark also applies to the high 
frequency results. 

In  the purely formal theory of high frequency noise (i.e. k-tco, all other var- 
iables fixed) the radiation field is of quadrupole type with an effective convective 
amplification factor of p - (1 - BC cos Thus one effect of the mean flow a t  
high frequencies is to change the exponent of the convective amplification factor 
from - 3 (Lighthill) to - 4. This is exactly half-way between the classical and the 
previous low frequency results. The explicit dependence of the pressure on 
densityis given byp2 - p, whichimplies a jet densityexponent of unity. Of course, 

t It should always be remembered that the Lighthill equation (i.e. a rearrangement of 
the equations of motion) must be able to  explain everything about jet noise. However, it 
may not be clear how to extract a certain piece of information from this equation whereas 
it may be clear how to extract it from another equation. 
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there is an additional (implicit) dependence on density through the quantity t;. 
Observe, however, that the 0 dependence of the sound pressure field is changed 
somewhat from the Lighthill result because of the appearance of g, (and hence 0)  

It is now possible to use our low and high frequency expressions for the pressure 
to establish the dependence of the mean-square sound level on the turbulence 
properties. The analysis parallels the classical results of Ffowcs Williams (1963). 

in <. 

7. Conclusions 
We have shown that at low and high frequencies the acoustic pressure in the 

far field can be written as an integral over the jet volume of the product of a 
suitable time derivative of the Lighthill stress tensor (evaluated at B, retarded 
time) and a known function of r .  The present high frequency results are valid 
outside the zone of silence. The most significant results are that a shrouding 
mean flow will change the exponent of the convective amplification factor from 
the classical results to some other value, that the self-noise source will generate 
terms proportional to the mean-flow gradients (hence the distinction between 
self- and shear-noise is artificial in the Lilley formulation) and that the convective 
amplification factor of a given kind of singularity is no longer a property of that 
singularity alone. For example, both a dipole and quadrupole may have an 
effective amplification exponent of - 5 [see (22)]. Finally convective amplifica- 
tion itself is frequency dependent, having an index for the pressure of - 5 and 
- 4 at low and high frequencies respectively. 

The author expresses his thanks to Dr R. Mani for help, encouragement and 
inspiration. Financial support for this work was provided by DOT-FAA, under 
contract DOT-OS-30034, Contract Administrator, Dr R. Zuckerman. 

Appendix? 

between the mean-square and instantaneous sound pressures. 

p(x, t ) :  symbolically 

The purpose of this appendix is to show the general mathematical relationships 

Consider a linear wave operator 9 operating on the instantaneous pressure 

(A 1) di”[a/at, a/ax; alp = f(x, t )  = g(y - U, t ,  Y, t ) .  

Here our physical space is spanned by a co-ordinate system x and t denotes time. 
The coefficients a of our wave operator are independent of time and of co-ordi- 
nates y that span a suitable subspace of x. In other words, we write x = y u Y, 
where y and Y are linearly independent subspaces of x such that the coefficients 
of 9 depend only on Y, i.e. a = a(Y). For example, in the Lilley equation y and 
Y may be identified with the axial and transverse co-ordinates respectively. 

The right-hand side of (A 1)  is a known source term that is assumed to convect 
with velocity U, = constant in y space. Again, in the Lilley formulation, the 

t The notation in this appendix is self-contained. 
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sources are generally convecting parallel to the axis of the jet. 
If the Fourier time transform of p is denoted by p* ,  then 

P Y X I W )  = ~ d ~ o ~ ( ~ , ~ o l ~ ) ~ * [ Y o ~ ~ o  IN -N,COS@)I, (A 2) 

where xo = Yo u yo, 

(2n)' - m  
g*(y,Ylw) = - ' 1 g(y, Y, t )  eiotdt, (A 3) 

N, = UJcc0 (c, = speed of sound at infinity) and 0 is the angle between the 
observation and U ,  directions. G is the Green's function that satisfies 

9 [ - i w , a / a x ; a ]  G(x,x,lw) = S(x-x,)  (A 5) 

and all radiation and finiteness conditions. 6( - ) denotes a suitable multi-dimen- 
sional delta function and xo is the location of the source. 

Result (A 2 )  can be obtained by applying Fourier transforms to (A 1) in t ,  y 
space and evaluating the inversion integral by the method of stationary phase. 
As such, (A 2 )  is valid only in the far field as x+m. It is also assumed that, as 
x+ 00,s reduces to the classical wave operator. 

Equation (A 2) shows that the far-field acoustic pressure (in frequency space) 
is given by the integral of the product of the Green's function and the spectrum 
of the source term in its moving reference frame. The integral is taken over the 
jet volume. Furthermore, it  is the Doppler-shifted frequency w (  1 - M, cos 0) 
of the integrand that contributes to the spectrum of the sound a t  frequency w. 

On the other hand, from the time-dependent solution p(x , t )  of (A 1) it  is 
possible to show that 

r*(xIw) = - Sdx, lG(x, xolw)[ H[xo, wa@/axo, w( 1 - U,. a@/axo)], (A 6) 
( W t  

where I?* is the Fourier transform (with respect to 7) of the correlation 

As such, r* is the spectrum of the mean-square acoustic pressure. The integral 
in (A 6) is taken over the jet volume. The definition of H involves the following 
string of quantities: 

9 ( Y , 5 > 7 )  = S_YJ(Y +B5, t + 7 ) f ( Y  -3k O d t ,  (A 8) 

R(Y,&T)  = 9(Y,K+UC7,7)  (A 9) 

(A 10) and 

Thus 9 is a suitable two-point correlation of the source term f with arbitrary 
time delay and spatial separation, R is the corresponding moving correlation and 
H is the frequency-wavenumber representation of this moving correlation. 

H(y,  k, w )  = R(y ,  g, 7) e--iord7 s eik*Cdg. 
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The phase of the Green’s function is given by @: specifically, we write 

One important assumption invoked in deriving (A 6) is that the amplitude of 
the Green’s function changes negligibly in one correlation length of the source. 
We remark that (A 6) is valid both in the far and the near field. For a compact 
turbulent eddy, the second argument of H in (A 6 )  can be replaced by zero. 

Equation (A 6) shows that the spectrum of the mean acoustic pressure can be 
obtained from the product of the Green’s function and the Doppler-shifted 
turbulence spectrum. The resemblance between (A 2) and (A 6) is clear, so that 
it is indeed possible to draw qualitative conclusions from (A 2) for I?*. In  particu- 
lar, the expression for the far-field spectrum of a convecting source [see (A 2)] is 
qualitatively very similar to that of noise generated by turbulence [see (A 6) ] .  
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